
Mochi Tutorial
Building Efficient Distributed

Microservices for Exascale

ROB ROSS, PHILIP CARNS, MATTHIEU DORIER, KEVIN
HARMS, ROB LATHAM, AND SHANE SNYDER

GARTH GIBSON, GEORGE AMVROSIADIS, CHUCK CRANOR,
SAURABH KADEKODI, AND QING ZHENG

JEROME SOUMAGNE AND JOE LEE

GALEN SHIPMAN AND BRAD SETTLEMYER

Argonne National Laboratory

Carnegie Mellon University

The HDF Group

Los Alamos National Laboratory

Outline of the tutorial

u Introduction & Motivation

u Examples of Mochi-based services

u Mercury tutorial

u Argobots tutorial

u Margo tutorial

u Hands-on exercises (optional)

u Other uses of Mercury and Argobots

I. Introduction
What is the Mochi project?

Challenges of Future Exascale Systems
u Heterogeneous, massively parallel compute nodes

u High performance, complex network topologies

u Tens of thousands of compute nodes to manage

u Constrained resources (power, I/O)

4

Top500 Supercomputers Today
1. Tianhe-2 (Intel Xeon + Xeon Phi):
2. Titan (Cray XK7 + Nvidia K20x):
3. Sequoia (BlueGene/Q):
4. K computer (SPARC64):

5. Mira (BlueGene/Q):

3,120,000 cores
560,640 cores

1,572,864 cores
705,024 cores
786,432 cores

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
1 2 4 6 8 10 12 14-

0K

500K

1,000K

1,500K

2,000K

2,500K

3,000K

3,500K

To
ta
l	N

um
be

r	o
f	C

oe
rs

Number of cores per socket in Top500 Total number of cores in Top500 rank #1
5

Massive On-node Parallelism
u To address massive on-node parallelism, the

number of work units (e.g., threads) must
increase by 100X

u MPI+OpenMP is sufficient for many apps, but
implementation is poor

u Today MPI+OpenMP == MPI+Pthreads

u Pthread abstraction is too generic, not
suitable for HPC

u Lack of fine-grained scheduling,
memory management, network
management, signaling, etc.

u Better runtime can significantly improve
MPI+OpenMP performance and support other
emerging programming models

6

core

MPI process with
many OpenMP
threads

Current situation:
• One or more MPI processes

per node
• Each MPI process has

limited internal parallelism
typically with OpenMP

• MPI Process communication
is often serialized

More storage/memory layers…

u Why

u BB: Economics (disk bw/iops too expensive)

u PFS: Maturity and BB capacity too small

u Campaign: Economics (tape bw too expensive)

u Archive: Maturity and we really do need a “forever”

Memory

Burst Buffer

Parallel File System

Campaign Storage

Archive

Memory

Parallel File System

Archive

HPC Before 2016

HPC After 2016 1-2 PB/sec
Residence – hours
Overwritten – continuous

4-6 TB/sec
Residence – hours
Overwritten – hours

1-2 TB/sec
Residence – days/weeks
Flushed – weeks

100-300 GB/sec
Residence – months-year
Flushed – months-year

10s GB/sec (parallel tape
Residence – forever

HPSS Parallel Tape

Lustre Parallel
File System

DRAM

Slide from Gary Grider (LANL)

Simulation workflow

APEX Workflows, LANL, NERSC, SNL,
SAND2015-10342 O, LA-UR-15-29113

Application Data

specialization of Data services

9

Application

CheckpointsExecutables
and Libraries

Intermediate
Data Products

SPINDLE SCR
FTI

DataSpaces

MDHIM
Kelpie

Pr
ov

is
io

ni
ng

Co
m

m
.

Lo
ca

l S
to

ra
ge

Fa
ul

t
M

gm
t.

an

d
G

ro
up

M

em
be

rs
hi

p

Se
cu

ri
ty

ADLB
Data store and pub/sub.

MPI ranks MPI RAM N/A N/A

DataSpaces
Data store and pub/sub.

Indep. job Dart RAM
(SSD)

Under
devel.

N/A

DataWarp
Burst Buffer mgmt.

Admin./
sched.

DVS/
lnet

XFS, SSD Ext.
monitor

Kernel,
lnet

FTI
Checkpoint/restart mgmt.

MPI ranks MPI RAM, SSD N/A N/A

Kelpie
Dist. in-mem. key/val store

MPI ranks Nessie RAM
(Object)

N/A Obfusc.
IDs

SPINDLE
Exec. and library mgmt.

Launch
MON

TCP RAMdisk N/A Shared
secret

We need service-oriented tools
to program at Exascale!

The Mochi project:
Exascale services for Science

u Motivation and Approach

• Science teams have rich data service
needs not satisfied by any single
approach (e.g., file system,
database)

• Approach is to enable data services
to be rapidly built and composed to
meet science needs

• Building blocks developed with HPC
systems as target: fast and scalable

u Impact

• Building block components
developed and in use by multiple
teams

• Three technology demonstrations
underway

• Fast, remote objects backed to
DRAM or nonvolatile storage

• Computation caching for multi-
scale simulations

• Highly scalable metadata service
enabling new organizations of
output data under file model

Terminology

u Building blocks

u Set of libraries that have been designed to be compatible with one another

u Examples: an RPC library, a threading library, a group membership library, etc.

u Service

u A software component designed to help another software component in
accomplishing a task

u Examples: a file system, a key-val store, a distributed database, a computation
cache, etc.

Some of the Mochi building blocks:
Mercury, Argobots, Margo

u Mercury

u High performance RPC framework

u Network abstraction, many transport methods supported

u One-sided (RDMA) communication for large data transfers

u Argobots

u Lightweight threading/tasking framework suited for massively multicore systems

u Managing OS-level and user-level threads and tasks

u Margo

u Bridge between Mercury and Argobots

u Makes it REALLY easy to use both!

Mercury
A high performance RPC framework
u https://mercury-hpc.github.io/

Mercury is an RPC system for use in the development of high performance
system services. Development is driven by the HDF Group with Argonne
participation.

u Portable across systems and network technologies

u Efficient bulk data movement to complement control messages

u Builds on lessons learned from IOFSL, Nessie, lnet, and others

Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Currently MPI, BMI (TCP/IB/GM), SSM (TCP/MPI/IB)
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4

Mercury supports many network
transport methods

Mercury

NA

SM MPICCI BMI

TCPVerbsGNI …

Argobots
A lightweight threading/tasking framework
Overview
u Separation of mechanisms and policies

u Massive parallelism

u Exec. Streams guarantee progress

u Work Units execute to completion

u User-level threads (ULTs) vs. Tasklet

Argobots Innovations
u Enabling technology, but not a policy maker

u High-level languages/libraries such as OpenMP,
Charm++ have more information about the user
application (data locality, dependencies)

u Explicit model:

u Enables dynamism, but always managed by
high-level systems

Argobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

U User-Level Thread T TaskletLightweight
Work Units

Ex
ec

ut
io

n
St

re
am

Private pool Private poolShared pool

U U

U T

TTU TU

Ex
ec

ut
io

n
St

re
am

Ex
ec

ut
io

n
St

re
am

Argobot’s ecosystem

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots

...

ESn

MPI+Argobots

ULT

ES

ULT

ES

MPI

Argobots runtime

Communication
libraries

Charm++

Applications

Charm++
Cilk “Worker”

Argobots ES

RWS ULT

Fused ULT 1

Fused ULT 2

Fused ULT N

…

CilkBots

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PaRSEC

OpenMP Mercury RPC

Origin

Target

RPC proc

RPC proc

OmpSs

GridFTP, Kokkos,	RAJA, ROSE, TASCEL, XMP, etc.External
Connections

II. Examples of Mochi-based services
The following examples are developed in the context of the DOE project

1. Remotely accessible objects
u API for remotely creating, reading, writing, destroying fixed-size objects/extents

u libpmem (http://pmem.io/nvml/libpmemobj/) for management of data on device

20

Argobots

Mercury
CCI

Argobots

Mercury
CCI

libpmem RAM, NVM,
SSD

Client app
Object API

Target

Margo Margo

P. Carns et al. “Enabling NVM for Data-Intensive Scientific Services.” INFLOW 2016, November 2016.

IB/verbs

1. Remotely accessible objects:
How much latency in the stack?

 0

 10

 20

 30

 40

 50

B
a
n
d
w

id
th

 (
G

iB
/s

)

Read

general node allocation median
leaf switch node allocation median

projected

 0

 10

 20

 30

 40

 50

24(2)

48(4)

72(6)

96(8)

120(10)

144(12)

168(14)

192(16)

B
a
n
d
w

id
th

 (
G

iB
/s

)

Client procs (client nodes)

Write

general node allocation median
leaf switch node allocation median

projected

Figure 4: Median aggregate bandwidth with 8 servers.

3 Preliminary evaluation

All experiments presented in this paper were conducted
on the Cooley Linux cluster operated by the Argonne
Leadership Computing Facility. Each node contains two
2.4 GHz Intel Haswell E5-2620 v3 processors (12 cores
total) and 384 GiB of RAM, and the nodes are connected
via an FDR InfiniBand network fabric. All software was
compiled with GCC 4.4.7 and O3 optimizations. The
libpmem libraries were configured to use tmpfs volumes
(i.e., conventional DRAM) as the backing store for ex-
perimental purposes in lieu of true NVM devices. Fig-
ure 3 shows the baseline asynchronous point-to-point
network bandwidth for a logarithmic range of message
sizes as measured using the mpptest benchmark [9] and
the MVAPICH2 MPI implementation, version 2.1. This
benchmark also exhibited a one-way latency of 1.3 mi-
croseconds for the smallest message sizes.

3.1 Aggregate concurrent bandwidth

We augmented the IOR benchmark [19] to use our proto-
type object storage API in order to evaluate aggregate I/O
throughput. This action necessitated two key changes
to IOR: adding an “aiori” module for our storage ser-
vice and modifying the core benchmark to allow modules
other than the POSIX module to issue fsync() operations.

Figure 4 shows the write and read bandwidth reported
by IOR as we hold the number of server nodes (and
thus the number of server daemons) fixed at 8 and vary
the number of client nodes from 2 to 16. There are 12
processes per client node in all cases. Each experiment
was repeated 30 times; box-and-whiskers plots show the

 1

 10

 100

 1000

noop
 1 2 4 8 16

 32
 64

 128
 256

 512
1 KiB

2 KiB
4 KiB

8 KiB
16 KiB

32 KiB

64 KiB

128 KiB

256 KiB

512 KiB

1 M
iB

C1 C2
L
a
te

n
cy

 (
u
s)

Access size (bytes)

Write
Read

Figure 5: Median sequential access latency with one
client and one server.

minimum, maximum, median, first quartile, and third
quartile for each set of measurements. IOR was config-
ured with the following parameters: a block size (total
data volume per process) of 6 GiB, a transfer size of 16
MiB, fsync enabled (to flush data at the conclusion of
each write phase), data validation enabled, and file-per-
process mode (which in our service equates to one object
per process).

Our initial experiments, labeled “general node alloca-
tion,” exhibited a high degree of variability. This phe-
nomenon can be attributed to suboptimal routing within
the Infiniband switch, which is a multistage switch rather
than a true crossbar [12]. We repeated the experiments
on a set of 18 nodes explicitly chosen to be co-located
on a single leaf switch in order to confirm this behavior.
These results, labeled “leaf switch node allocation,” ex-
hibit comparatively little variability, but the switch topol-
ogy only allows us to scale up to 10 client nodes in
this configuration. We also plot the projected aggregate
bandwidth for comparison; this was calculated by mul-
tiplying the maximum baseline point-to-point bandwidth
from Figure 3 by the minimum of the number of server
or client nodes. Our prototype is capable of saturating
the network bandwidth in each tested configuration.

3.2 Single-client latency

We constructed a microbenchmark that performs a series
of sequential I/O operations from a single client to a sin-
gle object to measure latency. It does not include data
persistence or flush primitives, but each I/O access in-
cludes at least one round-trip network operation, at least
one user-level thread creation and tear-down, and at least
one libpmem memory access. The median access latency
with a 95% confidence interval (calculated using the non-
parametric method recommended in [10]) out of 10,000
samples for each access size is shown in Figure 5. We
also plot the round-trip latency of a noop request on the
left side of the x axis for comparison.

We also annotate two protocol crossover points in the

FDR IB, RAM disk, 2.6 usec round-trip (MPI) latency measured separately

5.8 usec
NOOP

2. Continuum model coupled with
Viscoplasticity model

Lulesh continuum model:
- Lagrangian hydro dynamics
- Unstructured mesh

Viscoplasticity model
[1]:

- FFT based PDE solver
- Structured sub-mesh

R. Lebensohn et al, Modeling void growth in polycrystalline materials,
Acta Materialia, http://dx.doi.org/10.1016/j.actamat.2013.08.004.Sh

oc
kw

av
e

§ Future applications are exploring
the use of multi-scale modeling

§ As an example: Loosely coupling
continuum scale models with
more realistic
constitutive/response properties
§ e.g., Lulesh from ExMatEx

§ Fine scale model results can be
cached and new values
interpolated from similar prior
model calculations

2. fine scale model Database
u Goals

u Minimize fine scale model executions

u Minimize query/response time

u Load balance DB distribution

u Approach

u Start with a key/value store

u Distributed approx. nearest-neighbor query

u Data distributed to co-locate values for interpolation

u Import/export to persistent store

u Status

u Mercury-based, centralized in-memory DB service

u Investigating distributed, incremental
nearest-neighbor indexing

Import/export
DB instances

Distributed DB

Application domain

Query 6D space for
nearest neighbors

Before we start diving into codes…
u Connect (ssh) to the machine(s) provided by your teacher

u The machine has been setup with an OS image including all the necessary
libraries (installed in /usr, so you don’t have to do anything to have your
Makefiles find them)

u git clone https://xgitlab.cels.anl.gov/sds/sds-examples.git

u cd sds-examples

u mkdir build

u cd build

u cmake ..

u Make

u Throughout this tutorial, feel free to look at the codes and try them!

u IMPORTANT: if you are several user sharing a machine, change the port
number used by your programs (they are generally hard-coded) and recompile

III. Mercury
High-performance RPC

What is a RPC?

u Remote Procedure Call

u The client serializes the function’s argument into a buffer

u The buffer is sent to a server

u The server executes the function, serializes the return value

u The server sends the return value back to the client

u RPC Registration

u Registering a name/id to identify a particular function. On servers, this implies
providing the function pointer as well.

u RPC handle

u An opaque object representing an on-going RPC

Anatomy of a Mercury server

Main loop

HG_Progress

RPC handler

HG_Respond

Register RPC

HG_Trigger

HG_Get_input

HG_Addr_lookup

Anatomy of a Mercury client

Main loop

HG_Progress

Register RPC

HG_Trigger

Completion callback

HG_Get_output

Lookup callback

HG_Create
HG_Forward

Diving into examples

u All the following examples are available at

u https://xgitlab.cels.anl.gov/sds/sds-examples

u (they are cleaner and more commented there!)

u Example 1: a simple “Hello World” RPC server

u Example 2: sending arguments, returning values

u Example 3: bulk data transfers (RDMA)

u Note: unless you plan to use Mercury alone, no need to dive too much into
those examples. With Argobots+Margo, the ugly progress loop will go away ;-)

Example 1: “Hello World” (server)
(see mercury/01_hello/hello_server.c)

hg_return_t hello_world(hg_handle_t h)
{

printf("Hello World!\n");
HG_Destroy(h);
return HG_SUCCESS;

}

Example 1: “Hello World” (server)
#include <mercury.h>

static hg_class_t* hg_class = NULL;
static hg_context_t* hg_context = NULL;

int main(int argc, char** argv)
{

hg_return_t ret;

hg_class = HG_Init("bmi+tcp://localhost:1234", HG_TRUE);
hg_context = HG_Context_create(hg_class);

hg_id_t rpc_id = HG_Register_name(hg_class, "hello",
NULL, NULL, hello_world);

HG_Registered_disable_response(hg_class, rpc_id, HG_TRUE);

Example 1: “Hello World” (server)
/* Main loop listening for incoming RPCs. */
do
{

unsigned int count;
do {

ret = HG_Trigger(hg_context, 0, 1, &count);
} while((ret == HG_SUCCESS) && count);
HG_Progress(hg_context, 100);

} while(!stopped);

ret = HG_Context_destroy(hg_context);
ret = HG_Finalize(hg_class);

return 0;
}

Example 1: “Hello World” (client)
(see mercury/01_hello/hello_client.c)#include <mercury.h>

static hg_class_t* hg_class = NULL;
static hg_context_t* hg_context = NULL;
static hg_id_t hello_rpc_id;
static int completed = 0;

hg_return_t lookup_callback(const struct hg_cb_info *callback_info);

int main(int argc, char** argv)
{

hg_return_t ret;
hg_class = HG_Init("bmi+tcp", HG_FALSE);
hg_context = HG_Context_create(hg_class);
hello_rpc_id = HG_Register_name(hg_class, "hello", NULL, NULL, NULL);
HG_Registered_disable_response(hg_class, hello_rpc_id, HG_TRUE);

HG_Addr_lookup(hg_context, lookup_callback, NULL,
"bmi+tcp://localhost:1234", HG_OP_ID_IGNORE);

Example 1: “Hello World” (client)

while(!completed)
{

unsigned int count;
do {

ret = HG_Trigger(hg_context, 0, 1, &count);
} while((ret == HG_SUCCESS) && count && !completed);
HG_Progress(hg_context, 100);

}

HG_Context_destroy(hg_context);
HG_Finalize(hg_class);
return 0;

}

Example 1: “Hello World” (client)

hg_return_t lookup_callback(const struct hg_cb_info
*callback_info)

{
hg_addr_t addr = callback_info->info.lookup.addr;

hg_handle_t handle;
HG_Create(hg_context, addr, hello_rpc_id, &handle);

HG_Forward(handle, NULL, NULL, NULL);

HG_Addr_free(hg_class, addr);
HG_Destroy(handle);

completed = 1;
return HG_SUCCESS;

}

Example 2: a “sum” server
(see mercury/02_sum/types.h)

#include <mercury.h>
#include <mercury_macros.h>

MERCURY_GEN_PROC(sum_in_t,
((int32_t)(x))\
((int32_t)(y)))

MERCURY_GEN_PROC(sum_out_t, ((int32_t)(ret)))

This will generate
• The sum_in_t and sum_out_t structures
• The hg_proc_sum_in_t and hg_proc_sum_out_t functions to

serialize/deserialize these structures

Example 2: a “sum” server
(see mercury/02_sum/sum_server.c)

hg_return_t sum(hg_handle_t handle)
{

sum_in_t in; /* input structure for the RPC */
sum_out_t out; /* output structure for the RPC */

HG_Get_input(handle, &in);

out.ret = in.x + in.y;

HG_Respond(handle,NULL,NULL,&out);

HG_Free_input(handle, &in);
HG_Destroy(handle);

return HG_SUCCESS;
}

Example 2: a “sum” server
(see mercury/02_sum/sum_server.c)

MERCURY_REGISTER(hg_class, "sum", sum_in_t, sum_out_t, sum);

instead of

rpc_id = HG_Register_name(hg_class, "hello", NULL, NULL, hello_world);
HG_Registered_disable_response(hg_class, rpc_id, HG_TRUE);

Example 2: a “sum” server (client)
(see mercury/02_sum/sum_client.c)

sum_rpc_id = MERCURY_REGISTER(hg_class, "sum",
sum_in_t, sum_out_t, NULL);

Example 2: a “sum” server (client)
(see mercury/02_sum/sum_client.c)

hg_return_t sum_completed(const struct hg_cb_info *info)
{

sum_out_t out;
HG_Get_output(info->info.forward.handle, &out);

printf("Got response: %d\n", out.ret);

HG_Free_output(info->info.forward.handle, &out);

HG_Destroy(info->info.forward.handle);
completed = 1;
return HG_SUCCESS;

}

Example 3: bulk transfers

Client Server

(1’) Register
local memory
segment and
get handle

(1) Register
local memory
segment and
get handle (2) Send handle

through RPC

(3) Issue Put/Get

(4) Wait for
completion of
the Put/Get

(5) Send response
to initial RPC

Example 3: bulk transfers (types)
(see mercury/04_bulk/types.h)

#include <mercury.h>
#include <mercury_bulk.h>
#include <mercury_proc_string.h>
#include <mercury_macros.h>

MERCURY_GEN_PROC(save_in_t,
((hg_string_t)(filename))\
((hg_size_t)(size)) \
((hg_bulk_t)(bulk_handle)))

MERCURY_GEN_PROC(save_out_t,
((int32_t)(ret)))

The client sends a filename,
a size and the bulk handle to
access the data

The server return 0 or an error code

Example 3: bulk transfers (client)
(see mercury/04_bulk/save_client.c)

save_in_t in;
hg_bulk_t bulk_handle;
HG_Bulk_create(hg_class, 1, (void**) &buffer, &size,

HG_BULK_READ_ONLY, &bulk_handle);
in.bulk_handle = bulk_handle;

In the lookup callback:

Example 3: bulk transfers (server)
(see mercury/04_bulk/save_server.c)

RPC handler:

hg_return_t save(hg_handle_t handle)
{

hg_return_t ret;
save_in_t in;

struct hg_info* info = HG_Get_info(handle);

HG_Get_input(handle, &in);

rpc_state* my_rpc_state = (rpc_state*)calloc(1,sizeof(rpc_state));
my_rpc_state->handle = handle;
my_rpc_state->filename = strdup(in.filename);
my_rpc_state->size = in.size;
my_rpc_state->buffer = calloc(1,in.size);

Example 3: bulk transfers (server)
(see mercury/04_bulk/save_server.c)

RPC handler:

…
HG_Bulk_create(stt->hg_class, 1, &(my_rpc_state->buffer),

&(my_rpc_state->size), HG_BULK_WRITE_ONLY,
&(my_rpc_state->bulk_handle));

HG_Bulk_transfer(stt->hg_context, save_bulk_completed,
my_rpc_state, HG_BULK_PULL,
info->addr, in.bulk_handle, 0,
my_rpc_state->bulk_handle, 0, my_rpc_state->size,
HG_OP_ID_IGNORE);

return HG_SUCCESS;
}

Example 3: bulk transfers (server)
(see mercury/04_bulk/save_server.c)

Bulk completion callback:

hg_return_t save_bulk_completed(const struct hg_cb_info *info)
{

rpc_state* my_rpc_state = info->arg;

printf("Writing file %s\n", my_rpc_state->filename);
/* write file here */

save_out_t out;
out.ret = 0;

HG_Respond(my_rpc_state->handle, NULL, NULL, &out);

HG_Bulk_free(my_rpc_state->bulk_handle);

return HG_SUCCESS;
}

Example 3: bulk transfers (client)
(see mercury/04_bulk/save_client.c)

hg_return_t lookup_callback(const struct hg_cb_info *callback_info)
{

…
hg_handle_t handle;
HG_Create(state->hg_context, addr, save_rpc_id, &handle);

save_in_t in;
in.filename = …;
in.size = …;

HG_Bulk_create(hg_class, 1, (void**) &buffer, &size,
HG_BULK_READ_ONLY, &in.bulk_handle);

HG_Forward(handle, save_completed, …, &in);

…
return HG_SUCCESS;

}

Example 3: bulk transfers (client)
(see mercury/04_bulk/save_client.c)

hg_return_t save_completed(const struct hg_cb_info *info)
{

HG_Get_output(info->info.forward.handle, &out);
printf("Got response: %d\n", out.ret);
HG_Bulk_free(bulk_handle);

return HG_SUCCESS;
}

Some notes on bulk transfer

u When creating a bulk handle, you give Mercury information regarding how it
will access the buffer

u HG_BULK_READ_ONLY: Buffer will only be read until bulk handle is destroyed

u HG_BULK_WRITE_ONLY: Buffer will only be written until bulk handle is destroyed

u HG_BULK_READWRITE: a wild guess, anyone?

u Mercury can sometimes guess what you intend to do when creating a bulk
handle, and if the buffer is small enough, it can send the data along with the
RPC request

u E.g. the buffer is exposed with HG_BULK_READ_ONLY and you send the handler to
the server : Mercury will guess that you want the server to pull from it

Some last notes about these examples

u For clarity

u Many error-checking lines of code (e.g. assert(ret == HG_SUCCESS)) have been removed

u Many resource-destruction function calls have been omitted as well

u Global variables were used

u All callback functions (lookup, RPC completion, bulk transfer completion) have a
void* argument to pass along user-data (a way of creating a closure) in order to
avoid global variables. See mercury/03_uargs for the “sum server” example
rewritten in a “clean” way with these user arguments.

IV. Argobots
Lightweight threading/tasking

Argobots Execution Model
u Execution Streams (ES)

u Sequential instruction stream

u Can consist of one or more work units

u Mapped efficiently to a hardware resource

u Implicitly managed progress semantics

u One blocked ES cannot block other ESs

u User-level Threads (ULTs)

u Independent execution units in user space

u Associated with an ES when running

u Yieldable and migratable

u Can make blocking calls

u Tasklets

u Atomic units of work

u Asynchronous completion via notifications

u Not yieldable, migratable before execution

u Cannot make blocking calls

S

Scheduler Pool

U

ULT

T

Tasklet

E

Event

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots Execution Model

...

ESn

• Scheduler
– Stackable	scheduler	with	pluggable	

strategies
• Synchronization	primitives

– Mutex,	condition	variable,	barrier,	future
• Events

– Communication triggers
52

Explicit Mapping ULT/Tasklet to ES
u The user needs to map work units to ESs

u No smart scheduling, no work-stealing unless the user wants to use

ES
1

U0

U1

T1

T2

U2

U3

ES
2

U4

U5

• Benefits
– Allow locality optimization

• Execute work units on the same ES

– No expensive lock is needed between
ULTs on the same ES

• They do not run concurrently
• A flag is enough

53

Stackable Scheduler with
Pluggable Strategies
u Associated with an ES

u Can handle ULTs and tasklets

u Can handle schedulers

u Allows to stack schedulers hierarchically

u Can handle asynchronous events

u Users can write schedulers

u Provides mechanisms, not policies

u Replace the default scheduler

u E.g., FIFO, LIFO, Priority Queue, etc.

u ULT can explicitly yield to another ULT

u Avoid scheduler overhead

Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

U S U U U

yield() yield_to(target)
54

How to Write Argobots Code

S

Scheduler Pool

U

ULT

T

Tasklet

E

Event

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots Execution Model

...

ESn

Finalize

Initialize

Create	pools

Create	schedulers

Create	ESs

Create	ULTs/tasklets

Join	&	Free

P

S S

P

ES ES

U T

55

Diving into examples

u All the following examples are available at

u https://xgitlab.cels.anl.gov/sds/sds-examples

u (they are cleaner and more commented there!)

u Example 1: Execution streams and threads

u Example 2: Tasks

u Example 3: Work stealing with shared pool

u Example 4: Mutex and condition variables

u Example 5: Eventuals and futures

Example 1: ES and ULT
(see argobots/01_threads/01_threads.c)

#include <abt.h>

#define NUM_XSTREAMS 4

/* This is the function executed by each of the threads */
void thread_hello(void *arg)
{

/* Get the rank of the ES */
int rank;
ABT_xstream_self_rank(&rank);
printf("ULT %d in XSTREAM %d: Hello, world!\n",

(int)(size_t)arg, rank);
}

Example 1: ES and ULT
(see argobots/01_threads/01_threads.c)
int main(int argc, char *argv[])
{

ABT_xstream xstreams[NUM_XSTREAMS];
ABT_pool pools[NUM_XSTREAMS];
ABT_thread threads[NUM_XSTREAMS];
size_t i;

/* Initialize Argobots */
ABT_init(argc, argv);

/* Execution Streams
* xtrseam[0] will be the current ES, no need to create it.

 */
ABT_xstream_self(&xstreams[0]);
for (i = 1; i < NUM_XSTREAMS; i++) {

ABT_xstream_create(ABT_SCHED_NULL, &xstreams[i]);
}

Example 1: ES and ULT
(see argobots/01_threads/01_threads.c)

/* Get the first pool associated with each ES */
for (i = 0; i < NUM_XSTREAMS; i++) {

ABT_xstream_get_main_pools(xstreams[i], 1, &pools[i]);
}

/* Create ULTs */
for (i = 0; i < NUM_XSTREAMS; i++) {

ABT_thread_create(pools[i], thread_hello, (void *)i,
ABT_THREAD_ATTR_NULL, &threads[i]);

}

Example 1: ES and ULT
(see argobots/01_threads/01_threads.c)

/* Join & Free */
for (i = 0; i < NUM_XSTREAMS; i++) {

ABT_thread_join(threads[i]);
ABT_thread_free(&threads[i]);

}
for (i = 1; i < NUM_XSTREAMS; i++) {

ABT_xstream_join(xstreams[i]);
ABT_xstream_free(&xstreams[i]);

}

/* Finalize */
ABT_finalize();

return 0;
}

Example 2: Tasks
(see argobots/02_tasks/02_tasks.c)

void task_hello(void *arg)
{

printf("TASK%d: Hello, world!\n", (int)(size_t)arg);
}

/* Create Tasks */
for (i = 0; i < (NUM_XSTREAMS*TASKS_PER_XTREAM); i++) {

ABT_task_create(pools[i % NUM_XSTREAMS],
task_hello, (void *)i, NULL);

}

Example 3: Work stealing with shared pool
(see argobots/03_shared_pool/03_shared_pool.c)

ABT_pool shared_pool;

/* Create a shared pool */
ABT_pool_create_basic(ABT_POOL_FIFO, ABT_POOL_ACCESS_MPMC,

ABT_TRUE, &shared_pool);

/* Create schedulers */
for (i = 0; i < NUM_XSTREAMS; i++) {

ABT_sched_create_basic(ABT_SCHED_DEFAULT, 1,
&shared_pool, ABT_SCHED_CONFIG_NULL, &scheds[i]);

}

• All the schedulers are created with the same pool; tasks and ULTs are
added to this common pool and the ES execute them

Example 4: Mutex and condition variables
(see argobots/04_mutex/04_mutex.c and
argobots/09_cond_var/09_cond_var.c)

ABT_mutex my_mutex = ABT_MUTEX_NULL;
ABT_mutex_create(&my_mutex);
ABT_mutex_lock(my_mutex);
ABT_mutex_unlock(my_mutex);
ABT_mutex_free(&my_mutex);

ABT_cond my_cond;
ABT_cond_create(&my_cond);
ABT_mutex_lock(my_mutex);
ABT_cond_wait(my_cond,my_mutex);
ABT_cond_signal(my_cond);
ABT_mutex_unlock(my_mutex);

Example 5: Eventuals and futures
(see argobots/05_eventual/05_eventual.c and
argobots/06_future/06_future.c)

ABT_eventual my_eventual;
ABT_eventual_create(sizeof(int), &my_eventual);
ABT_eventual_set(my_eventual, &r, sizeof(r));
ABT_eventual_wait(my_eventual, (void**)&r);
ABT_eventual_free(&my_eventual);

void future_is_ready(void** args) { … }

ABT_future my_future;
ABT_future_create(num_elements, future_is_ready, &my_future);
ABT_future_set(my_future,(void*)x);
ABT_future_wait(my_future);
ABT_future_free(&my_future);

Other features

u Not described in this tutorial

u Writing you own scheduler

u Stacking schedulers

u Migrating tasks and threads across execution streams

V. Margo
Bridging Mercury and Argobots

Margo: linking Mercury and Argobots

u Motivation

u Ugly progress loop and callbacks in Mercury

u Argobots provides a great opportunity for changing the way Mercury is used

u In practice

u Mercury progress loop placed in a separate execution stream

u RPC calls dispatched to a set of execution streams sharing a common pool

u What’s next

u Example 1: Mercury “hello world” revisited

u Example 2: Mercury “bulk transfers” revisited

Example 1: Hello World (server)
(see margo/01_hello/hello_server.c)

hg_return_t hello_world(hg_handle_t h)
{

printf("Hello World!\n");

HG_Destroy(h);

if(some condition) {
margo_finalize(mid);

}

return HG_SUCCESS;
}
DEFINE_MARGO_RPC_HANDLER(hello_world)

Example 1: Hello World (server)
(see margo/01_hello/hello_server.c)

#include <abt.h>
#include <abt-snoozer.h>
#include <margo.h>

static hg_class_t* hg_class = NULL;
static hg_context_t* hg_context = NULL;
static margo_instance_id mid = MARGO_INSTANCE_NULL;

hg_return_t hello_world(hg_handle_t h);
DECLARE_MARGO_RPC_HANDLER(hello_world)

int main(int argc, char** argv)
{

hg_return_t ret;
hg_class = HG_Init("bmi+tcp://localhost:1234", HG_TRUE);
hg_context = HG_Context_create(hg_class);

Example 1: Hello World (server)
(see margo/01_hello/hello_server.c)
…

ABT_init(argc, argv);
ABT_snoozer_xstream_self_set();

mid = margo_init(0, 0, hg_context);

hg_id_t rpc_id = HG_Register_name(hg_class, "hello", NULL, NULL,
hello_world_handler);

HG_Registered_disable_response(hg_class, rpc_id, HG_TRUE);

margo_wait_for_finalize(mid);

ABT_finalize();
HG_Context_destroy(hg_context);
HG_Finalize(hg_class);

return 0;
}

Example 1: Hello World (client)
(see margo/01_hello/hello_client.c)

#include <abt.h>
#include <abt-snoozer.h>
#include <margo.h>

static hg_class_t* hg_class = NULL;
static hg_context_t* hg_context = NULL;
static margo_instance_id mid = MARGO_INSTANCE_NULL;
static hg_id_t hello_rpc_id;
static hg_addr_t svr_addr;

static void run_my_rpc(void *arg);

int main(int argc, char** argv)
{

ABT_xstream xstream;
ABT_pool pool;
ABT_thread threads[4];

Example 1: Hello World (client)
(see margo/01_hello/hello_client.c)

…
hg_class = HG_Init("bmi+tcp", HG_FALSE);
hg_context = HG_Context_create(hg_class);
ABT_init(argc, argv);

ABT_snoozer_xstream_self_set();
ABT_xstream_self(&xstream);
ABT_xstream_get_main_pools(xstream, 1, &pool);

mid = margo_init(0, 0, hg_context);

hello_rpc_id = HG_Register_name(hg_class, "hello", NULL, NULL, NULL);

HG_Registered_disable_response(hg_class, hello_rpc_id, HG_TRUE);

margo_addr_lookup(mid, "bmi+tcp://localhost:1234", &svr_addr);

Example 1: Hello World (client)
(see margo/01_hello/hello_client.c)

int i;
for(i=0; i<4; i++) {

ABT_thread_create(pool, run_my_rpc, NULL,
ABT_THREAD_ATTR_NULL, &threads[i]);

}

ABT_thread_yield_to(threads[0]);

for(i=0; i<4; i++) {
ABT_thread_join(threads[i]);
ABT_thread_free(&threads[i]);

 }

margo_finalize(mid);
ABT_finalize();
HG_Context_destroy(hg_context);
HG_Finalize(hg_class);
return 0;

}

Example 1: Hello World (client)
(see margo/01_hello/hello_client.c)

void run_my_rpc(void *arg)
{

hg_handle_t handle;
hg_return_t ret;
ABT_thread self;
ABT_thread_id id;

HG_Create(hg_context, svr_addr, hello_rpc_id, &handle);

margo_forward(mid, handle, NULL);

HG_Destroy(handle);

ABT_thread_self(&self);
ABT_thread_get_id(self,&id);

printf("ULT [%d] done.\n", (int)id);
}

Example 2: Bulk transfers
(see margo/03_bulk/save_server.c)

ret = HG_Bulk_transfer(hg_context, callback,
args, HG_BULK_PULL, origin_addr, origin_bulk_handle,
origin_offset, local_bulk_handle, local_offset, size,
op_id);

ret = margo_bulk_transfer(mid, HG_BULK_PULL,
origin_addr, origin_bulk_handle, origin_offset,
local_bulk_handle, local_offset, size);

No more callback, this call hands the current ES to other
threads/tasks until the transfer is completed, then continues.

Some additional notes

u Doing POSIX I/O inside a RPC handler will block the current ES instead of
context-switching to other tasks/threads

u Solution: https://xgitlab.cels.anl.gov/sds/abt-io

u ABT-IO has an interface similar to POSIX I/O but will allow other tasks/threads to
progress on the ES while I/O is being performed

u Distributed services: requires creating multiple servers that “know” each other

u Solution: https://xgitlab.cels.anl.gov/sds/ssg

u SSG (Simple Static Grouping)

u Allows to bootstrap a set of servers using either MPI or a configuration file

VI. Related work
Some projects using Mercury, Argobots, Margo, etc.

BOLT: OpenMP over Lightweight Threads
u About BOLT

u BOLT is a recursive acronym that stands for
"BOLT is OpenMP over Lightweight Threads”

u https://bolt-omp.org

u Goal

u OpenMP framework that exploits lightweight threads and tasks

78

Nested	Massive	Parallelism

Fine-grained	Task	Parallelism

Interoperability	with	MPI	and	Other	Internode	Programming	Models

Motivation

u Fine-grained parallelism in OpenMP

u Nested parallelism

u Task parallelism

u Better interoperability between OpenMP and MPI

u Needs lightweight context-switch on blocking operations

u Pthread-based OpenMP implementations may not be efficient to handle those issues

u The context-switch overhead of Pthread is high

u Oversubscription with Pthreads is too expensive

u BOLT utilizes lightweight threads and tasks instead of Phtreads

u Oversubscription becomes much less costly because of very low context-switch overhead of
lightweight threads

79

Nested Parallel Loop: Microbenchmark

80

A thread for each CPU is created
by default

Each thread executes a portion

Each thread creates more threads
for the second loop

Each inner thread executes a portion

int in[1000][1000], out[1000][1000];

#pragma omp parallel for

for (i = 0; i < 1000; i++) {

lib_compute(i);

}

lib_compute(int x)

{

#pragma omp parallel for

for (j = 0; j < 1000; j++)

out[x][j] = cosine(in[x][j]);

}

Contribution: Adrian Castello (Universitat Jaume I)

Nested Parallel Loop: Implementations
u GCC

u Does not reuse the idle threads in nested parallel constructs

u All thread teams inside a parallel region need to be created

u ICC
u Reuse idle threads

u If there are not more threads available, new threads are created

u All created threads are OS threads and add overhead

u Implementation using Argobots
u Creates ULTs or tasklets for both outer loop and inner loop

81

ES	0

ES	N-1
…

WU

Outer loop synchronization point

…

…

S

S

S

S

WU

WU

WU WU

WU WU WU

One ES for each core
Work unit for the outer loop

Each work unit executes a portion of the inner loop

Inner loop synchronization point

0.00

0.01

0.10

1.00

10.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

ICC/Pthreads ICC/Argobots	ULTs ICC/Argobots	tasks

0.00

0.01

0.10

1.00

10.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

GCC/Pthreads GCC/Argobots	ULTs GCC/Argobots	tasks

Nested Parallel Loop: Performance

GCC OpenMP implementation does not
reuse idle threads in nested parallel
regions, all the teams of threads need
to be created in each iteration

Execution time for 36 threads in the outer loop

Some overhead is added by creating
ULTs instead of tasks

Lower
is

betterLower
is

better

82

MPI+Argobots
u Exploiting in MPI the advanced features of Argobots

u Reduce locking frequency in the MPI runtime

u The cost of consistency within an ES is lower than across ESs

u A ULT can give up the critical section without giving up the lock

u Low latency ownership passing: Less atomics and memory barriers

u Advanced synchronization mechanisms (e.g. message-driven synchronization)

u Interaction with other programming systems

u Argobots = threading layer; MPI = communication layer

u Porting more applications to the MPI+Argobots model

u Several irregular applications (fine-grained concurrency and communication) can
benefit from this model

u Publication

u Follow up publication which aims at a full integration of MPI and Argobots

u Software

u First release in the upcoming months

Argobots-Aware MPI Runtime

84

• Problem
– Traditional MPI implementations are only

aware of kernel threads
– Thread-synchronization costly to ensure

thread-safety and progress requirement from
MPI

– Wasted resources if a kernel thread blocks for
MPI communication

• Solution
– An MPI implementation aware of Argobots

threads
– Lightweight context switching to overlap

costly blocking operations (communication,
locks, etc.)

– Reduced thread-synchronization
opportunities (guaranteed consistency within
an ES without locks or memory barriers)

Contact:
- Pavan Balaji balaji@anl.gov
- Abdelhalim Amer aamer@anl.gov

• Recent results
– Developed an MPICH+Argobots prototype
– Demonstrated the ability to overlap blocking

communication with HPCG, SpMV, etc.
– Deployed successfully a fully threaded

Graph500 benchmark implementation

• Impact/Potential
– The new MPI+Argobots model has the

potential to overcome the long lasting
multithreaded MPI communication challenge

MPI+Argobots Execution Model

ULT

ES

ULT

ES

MPI

ULT

ES

ULT

ES

MPI tim
eline

ULT1 do
computation, start a
MPI send
Context switch to ULT2,
ULT1 communication in
background

Context switch back to
ULT1, ULT2
communicate in
background

ULT1

ULT2

This work is supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-06CH11357.

Acknowledgements

This document was prepared using materials and works from the following contributors

Abdelhalim Amer, George Amvrosiadis, Pavan Balaji, Philip Carns, Chuck Cranor,
Matthieu Dorier, Garth Gibson, Kevin Harms, Saurabh Kadekodi, Rob Latham, Joe Lee,
Rob Ross, Brad Settlemyer, Galen Shipman, Shane Snyder, Jerome Soumagne, Qing Zheng

All feedbacks on this tutorial are appreciated: mdorier@anl.gov

Exercises follow! Stay around!...

Exercise 1: a phone book
u Goal

u A server maintains a table associating names (strings) with phone numbers (string)

u Clients can connect to this server and add/modify/request entries

u How we will implement that

u A server listens for 2 kinds of RPC: “set_num” and “get_num”

u The client presents a prompt to the user, the user can type the following
commands:

u set name phone

u get name

u Provided

u sds_example/margo/exercises/phone_book

u The phonebook structure and its functions (in phone_book.h)

u Skeletons of clients and servers

u TODO: fills the TODO in phone_client.c, phone_server.c and types.h

Exercise 2: a forwarding server

u Goal

u We take the example of the “backup server” again, but this time and intermediate
server relays the request to the actual backup server

u Scenario

u Client C sends a request to save a file to a “forward server” F

u F forwards the request to a backup server B

u B issues an RDMA “pull” operation to get the data from the client

u B sends a response to F

u F sends a response to C

u Where to look

u sds_example/margo/exercises/forward_save

Exercise 2: a forwarding server

u In Mochi terms

u The client sends a “forward_save” RPC to the forwarder

u The forwarder sends a “save” RPC to the backup server

u Initially, the client is setup to send a “save” to the server directly

u Find the TODO in save_server.c so that it listens to a different port

u The “save_in_t” and “save_out_t” types can be used by both the save and
forward_save RPCs, however the client will have to add its address

u Look at types.h and add a string field for the address

u Look at the TODOs in save_client.c to have the address serialized and sent through
the RPC, and have the save_client issue a forward_save instead of a save

u Fill up the TODOs in forwarder.c

